티스토리 뷰
문제
https://www.acmicpc.net/problem/20506
풀이
트리DP를 사용합니다.
트리가 주어졌을 때 다음 \(2\)개의 배열을 정의합니다:
- \(cnt[i]:\) \(i\)를 루트로 하는 서브트리의 크기. (노드의 개수)
- \(dp[i]:\) \(i\)를 \(lca\)로 가지는 두 노드의 쌍의 개수.
\(dp[i]\), 즉, \(i\)를 \(lca\)로 가지는 두 노드의 쌍의 개수를 구하는 방법은 다음과 같습니다:
- \(i\)를 루트로 하는 서브트리의 모든 쌍의 개수를 구합니다.
- 구한 개수에서 \(i\)의 자식을 루트로 하는 서브트리에 포함된 쌍은 \(i\)를 \(lca\)로 가질 수 없으므로 그 개수를 뺍니다.
그러므로, \(i\)의 자식 노드들을 \(c_{1}, c_{2}, c_{3}, ... , c_{m}\)이라고 할 때, \(dp[i]\)에 다음 값을 저장합니다:
$$dp[i] = cnt[i] ^ 2 - \sum_{j = 1}^{m} cnt[c_{j}] ^ 2$$
이후, 구한 개수를 홀수번째의 개수와 짝수번째의 개수로 나눠 그 값을 더해나가면 됩니다.
시간복잡도: \(O(N)\)
코드
#include <bits/stdc++.h>
#define x first
#define y second
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
int N;
vector<vector<int>> graph;
ll cnt[200001], dp[200001], sum_a = 0, sum_b = 0;
void solve(int cur, int pnode) {
cnt[cur] = 1;
for (auto next : graph[cur]) {
if (next == pnode) continue;
solve(next, cur);
cnt[cur] += cnt[next];
dp[cur] -= cnt[next] * cnt[next];
}
dp[cur] += cnt[cur] * cnt[cur];
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int root;
cin >> N;
graph.resize(N + 1);
for (int i = 1; i <= N; ++i) {
int n;
cin >> n;
if (n == 0) root = i;
graph[n].push_back(i);
}
solve(root, 0);
int idx = 0, cur = 0;
for (int i = 1; i <= N; ++i) {
ll a = dp[i] - (dp[i] / 2), b = dp[i] / 2;
a *= i, b *= i;
if (!idx) {
sum_a += a;
sum_b += b;
}
else {
sum_a += b;
sum_b += a;
}
cur += dp[i];
idx = cur % 2;
}
cout << sum_b << ' ' << sum_a << '\n';
return 0;
}
'BOJ' 카테고리의 다른 글
[BOJ 2618] 경찰차 (3) | 2021.05.26 |
---|---|
[BOJ 17422] 지폐가 넘쳐흘러 (1) | 2021.05.19 |
[BOJ 15669] 나무 위의 입자 (0) | 2021.05.13 |
[BOJ 1693] 트리 색칠하기 (0) | 2021.05.13 |
[BOJ 7812] 중앙트리 (0) | 2021.05.12 |
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- Tree DP
- PBA
- Dijkstra
- LCA
- codeforces
- Greedy
- DP Traceback
- binary search
- Prefix Sum
- BOJ
- Sliding Window
- sorting
- knapsack
- graph
- Tree
- hello
- Coordinate Compression
- Bit Masking
- Union Find
- DP
- 737-2
- Constructive
- Priority Queue
- Combinatorics
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
글 보관함